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The response of an isotropic, nonlinear viscoelastic, thin-walled tube to combinations
of axial force F, axial couple G and pressure difference p is considered theoretically and
experimentally. Theory is based on the membrane theory of thin shells, applied to a
thin-walled circular cylindrical tube. The components of two dimensional stress and
strain in the wall of the tube are derived, allowing for arbitrarily large deformations;
but restriction to small deformations is shown to be necessary if the history of stress is to
be controlled at will through F, G and p. For arbitrary choice of F, G and p as functions
of time the strain is shown to depend on three stress tensors P, Q, R independent of time,
and three scalar functions of time. An expression for the linear strain tensor in terms of
P, Q, R is obtained which involves four scalar functions @y, ¢;, ds, ¢5. These functions
depend on the invariants of P, Q, R and on the three scalar functions of time. If any one
of F, G, p is always zero then R =0 and only ¢,, ¢,, ¢, are required. In the case of
proportional loading (Q = R =0) only ¢, and ¢, are required and any one of the
three strain components can be calculated from the remaining two.

Creep and recovery experiments under simultaneous axial force and couple were
conducted on a thin-walled tube of polypropylene at 65.5°C. Theory was used to
calculate the circumferential tensile strain from the measured shear strain and
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544 C.P. BUCKLEY AND A. E. GREEN

longitudinal tensile strain. For this particular tube ¢, and ¢, were found to be related
in a special manner, implying that nonlinearity can be adequately described by
allowing the shear creep compliance to change with stress history. By varying separately
combinations of the invariants of P, ¢, was found to depend on both hydrostatic
and deviatoric components of the applied stress.

1. INTRODUCGTION

The response of a material to biaxial stress is conveniently studied by subjecting thin-walled
tubular specimens to combinations of axial force, axial torque and pressure difference across the
wall. This technique is finding increasing application to polymers, which generally deform as
nonlinear viscoelastic solids. Experimental results to date have been interpreted in terms of
formulae which have only restricted application. See for example the cases of polyvinyl chloride
(Onaran & Findley 19654, b,1971; Findley & Lai 1967) polymethyl methacrylate (Baev &
Malinin 1966; Zaslawsky 1969) polyurethane (Lai & Findley 19694) polycarbonate (Lai &
Findley 19695) polyethylene (Ewing, Turner & Williams 1972, 1973) and polypropylene
(Buckley & McCrum 1974). Although for some purposes this approach can be adequate, there
is a need for a theoretical framework within which to express the deformation of any such tube.
Our aims in this paper, therefore, are first to develop a rather general theory for the deformation
of the tube when it is composed of an isotropic nonlinear viscoelastic material, and secondly to
apply the theory to some experimental results obtained with a tube of polypropylene.

The theoretical approach is based on the membrane theory of thin shells. It is developed in
three parts. In § 2 general expressions for stress and strain in a deformed membrane are derived,
subject only to the requirements of mass conservation, equilibrium and objectivity of the observer.
These are then evaluated in § 3 for the special case of a thin-walled circular cylindrical tube,
subjected to an axial force, axial couple and pressure difference. We show that the stress history
can be controlled at will by the experimenter only when deformations of the tube are small. In § 4
the tube is taken to consist of an isotropic but otherwise generally nonlinear viscoelastic material.
We derive general expressions for the deformation of the tube under these conditions. The
expressions are found to take a simple explicit form involving only four independent material
response functions.

The usefulness of the theory is then demonstrated by applying it to creep and recovery experi-
ments under combined axial force and torque (combined tension—torsion) on a thin-walled tube
of isotropic polypropylene, the strains in the tube being small. Some results of these experiments
have been already presented elsewhere in another form (Buckley & McCrum 1974). In fact, the
present theory is used to give a rational basis to the intuitive interpretation which was applied
before to these results. Finally we illustrate how stress dependence of the material response
functions can be examined systematically by varying independently the two stress invariants
involved.

2. MEMBRANE THEORY

Let the motion of points of a surface s embedded in Euclidean 3-space be specified by a position
vector r and velocity © where ' ‘
r=r(04,0%1t), o=+ (2.1)

In (2.1), 6% (¢ = 1,2) are convected coordinates, ¢ is the time and a superposed dot denotes
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partial differentiation with respect to ¢ holding 6* fixed. Base vectors a@,, a%, unit normal as,
metric tensors a,, a*# and Christoffel symbols are defined byt

a, = 0r[d0%, a*a,=20; azat=a, xa,
oa 2.2
Ayp = Ay @, a*F =a*-af, a=deta, If, = aa"@g, (2:2)
where 87 is the Kronecker delta. Greek indices take the values 1, 2.
Let 2, bounded by a closed curve 02, be part of the surface s occupied by an arbitrary material

region of the surface in the configuration at time ¢, and let
v=y,a% (2.3)

be the outward unit normal to the closed curve 02, in the surface. The mass density of the surface
in the configuration at time ¢is p = p(6%,¢). Forces acting on & are analogous to those acting on
a three-dimensional region. They consist of a contact force acting across 02 (which is analogous
to the stress vector in three dimensions) and which is denoted by n = n(6%, ¢; v) per unit length.
Also there is an externally applied force b = b(6%,¢) per unit mass of the surface which consists
of a body force and the resultant of the forces acting on each side of the surface.

Equations of mass conservation, linear momentum and moment of momentum arej

d
cﬁf@pdo‘ = 0, (2.4)
d
——f pvdo‘:f pbdo‘+f nds, (2.5)
di P P (4
d
—f rx:vpda:f rx bpda‘+f rxnds, (2.6)
dz P P (74

where do, ds are elements of surface arca and length, respectively. The field equations which
may be derived from (2.4) to (2.6) are

pab = K(0) = po A4, (2.7)

where p,and 4 are the values of p and a respectively in some reference configuration of the surface
s, and % is independent of . Also

O(N=at) [00* + kb = k9, (2.8)
a,x N*=0, (2.9)
where n= Ny, (2.10)

Greek indices which occur twice are summed. If

Ne = Nwig, (2.11)

where ¢ is summed over values 1, 2, 3, then (2.9) and (2.8) yield the component equations
Ne3 =0, N*F = Nbe, (2.12)
Neb|, +pb-af = pd-ab, b,, N*Pat+kb-a® = kd-a?, (2.13)

1 For a summary of surface geometry see Green & Zerna (1968).
1 The corresponding field equations were obtained by a different procedure by Green, Naghdi & Wainwright
(1965). See also Naghdi (1972).

47-2
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546 C. P.BUCKLEY AND A. E. GREEN

where @® = a;, b, is the curvature tensor and a vertical rule denotes surface covariant differentia-
tion. Also (2.11) reduces to
Noc = Naﬂaﬂ. (2.14)

We assume that the inertia terms in the equations of motion (2.13) may be neglected at the
time of measurement of deformation. Also, we assume that the only force applied to the surface s
is a pressure difference p, per unit area of s. Then

kb = atpa, (2.15)
and equations (2.13) reduce to
Ne#|, =0, by, Nebtp=0. (2.16)

In addition to the symmetric two dimensional stress tensor N*/ we require a symmetric two
dimensional strain tensor which we take to be

3“/9 = %(auﬂ—Aaﬂ), (2.17)

where 4, are the values of a,; in a reference configuration. The tensors N7, ¢, a,, are all
unaltered by rigid-body motions of the whole surface s.

3. CIRCULAR CYLINDRICAL TUBE

Consider a circular cylindrical tube of viscoelastic material which is initially unstressed and
whose wall thickness is small compared with its length [, and radius ¢,. We limit attention to
experiments in which a resultant force F is applied over the ends of the tube parallel to its axis,
aresultant couple G about its axis and a pressure difference p between inside and outside surfaces
of the tube, measured per unit area of the deformed tube. All three quantities #, G, p are specified
functions of time. Since the wall thickness of the shell is small, and the shell is not under flexure,
we regard the shell as a membrane and make use of the theory in § 2. We assume that F, G and p
are applied in such a way that homogeneous strains are induced in the tube so that at time # the
radius and length become ¢(¢) and /(¢) respectively, where

e(t) = conlt), Ut) = LAD). (3.1)
In addition there is a twist 1(¢) per unit length of the cylinder at time ¢.

The tube in a reference configuration at time £, and in the configuration at time ¢ > £,, may be
described by position vectors R, r respectively where

R = ze;+¢y(e;,cos 0+ e,sin6), } (3.2)
r = Azey+ puc[e, cos (0 +YAz) + eysin (0 +yrAz)], '
where e; (¢ = 1, 2, 3) is a system of constant orthonormal vectors and
0<z<!, 0<0<2m (3.3)
We choose the coordinates 6= so that
O = Ocy, 0% = z. (3.4)

Then from (2.2) and (3.2) we have
a, = p[ —eysin (0 +YrAz) +e,cos (0 +Yraz)],
a, = pAYrc[ — eysin (0 4+ Az) + ey cos (0 +Az)] + Aes, (8.5)
a; = e, cos (0 +1Az) + eysin (0 +rAz).
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Hence Ay = WP Gyg = PPAYC, Qg = AX(1+4uPY?c), F/(;'Ly = 0’} (3.6)
a=A%2 al'=pu i+, a'?= —yc[A, a® =A% ’

Moreover, since bop = G3°0a,[008, b% = a*2b,,, (3.7)
it follows that

bll = _/1’/603 b12 = _ﬂA¢" b22 = —ﬂ/\z’ﬁgﬁo,

1 Xy (3.8)
b} =——, bl=—-—-L, b3=0=0.
1 ey % 1= 103

The values of a4, @/, a in the reference configuration are denoted by 4,4, 4*4, A respectively and
are given by

A=A =65 A=1. (3.9)
From (2.17), (3.6) and (3.9) we obtain the components of strain
ey = 3(pP—1), ey = A1 +p*%}) — 1], e, = §u2AY0,. (3.10)
The unit normal to a curve z = constant in the configuration at time ¢ is given by
v=a*(a®)t, v, =0, v,=(a®)"t=A (3.11)

From (2.11) and (3.11) it follows that the force vector across this curve is
n = AN%a,
= A2N%2ey + Au( N2 + Ayfcy N22) [ — ey sin (0 + YrAz) + ey cos (0 +YrAz)] (3. 12)
per unit length of the curve in the configuration at time ¢. Since the line element is given by
ds = (a;,)¥dO* = pc,db, (3.13)
we obtain from (3.12) the formulae
F =2nA2ucy N2, G = 2nApu3ci( N2 + Ayfrcy N22). (3.14)

We consider a viscoelastic material in which the strain at time ¢ depends on the whole history
of the stress N*#. Since the strain in (3.10) and the metric tensor (3.6) are functions of ¢ and are
independent of 6%, we consider only stress histories which are independent of 6*. It follows that
the equations of motion (2.16) are then satisfied provided

p = ey [N+ 2X90c, N2 4+ A%)r263 N22). (3.15)

If N*# has a specified history as a function of time then it is clear that the deformation discussed
here can only be maintained if F, G, p have the values given in (3.14) and (3.15) which depend
also on A, u, ¥¢,. Under experimental conditions we wish to be able to specify the history of
F, G and p. Also, in order to reduce the theory to a more usable form it is desirable to be able to
choose stress histories of a proportional loading type, or possibly a combination of such histories,
but this is, in general, incompatible with arbitrary choice of F, G and p in the present theory.

In many experiments with viscoelastic materials such as polypropylene it is found that the
response of the material is nonlinear even when the strains in the tube are small. In such a situa-
tion we may introduce an approximation for A, g, ¥¢, in (3.14), (3.15) and the strain—stress
relations, to yield a theory which meets the requirements mentioned above. If

A=1 +e, p= 1 +€ lﬁ(’.o = 7/A3 (3-16)
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548 C.P. BUCKLEY AND A. E. GREEN

and if the numbers ¢, €,, ¥ which represent the deformation of the tube are small, then we have,
approximately f F=2mc, N2, G =213 N2 p=cg' N1 (3.17)
and €11 =65 b3 =6, €13 =7%Y. (3.18)

If we now specify values of F, G, p as functions of time we control the values of N*/ independently
of the strain. With the same approximation we may form covariant components N,; and mixed
components Nj of stress from N*# with the help of the metric tensor 4,, instead of 4,4, so that

N/O; = AﬂANa/\, Naﬁ = AalNg' (3.19)

4. STRESS HISTORIES

It is convenient to work with invariant forms of the stress and strain tensors which are defined
in terms of ¢, 5, N*# by the equations

E=c,;A*®Af N=N4A,@A, (4.1)

The symmetric tensors E, N are unaltered by superposed rigid body motions of the whole surface.
In the light of the small strain approximation introduced at the end of § 3 we assume that the
surface consists of a simple material which is such that the strain E depends on the whole history
of the stress N. Thus :

E= E [N(),t—1] (4.2)
where £ is a functional of the stress history.} Moreover, if the surface is isotropic, with a centre of
symmetry, in its reference configuration, the functional in (4.2) is isotropic. Also E given by (4.2)
must form a compatible system of strain.

For the problem of the cylindrical tube discussed in § 3 we wish to be able to specify F, G and p
as functions of the time so that, from (3.17), N*f must be functions of time only when we make
the particular choice of coordinates (3.4). Moreover the base tensors A, ® A are functions of 64,
independent of time. It follows from (4.1), that for the problems under discussion in which
F, G and p are specified as functions of time the tensor N(7) can always be expressed in the form

N(7) = P(0*)f(7) + Q(0%) &(7) + R(0%) ¢(7), (4.3)
where P, Q, R are symmetric tensor functions of 0% independent of time 7, and f, g, ¢ are functions
of 7. If any one of F, G and p is maintained at zero it is always possible to take R = 0 in (4.3),

while if any two are maintained at zero it is always possible to take Q = R = 0. In general we
adopt the form (4.3) for N(7) and substitute into (4.2), which then reduces to

E=E(P,Q,R), (4.4)

where E is a symmetric isotropic function of P, Q, R and also a functional of f(7), g(7), ¢(7).
Since we are dealing with two dimensional symmetric tensors it follows (Rivlin 1955; Pipkin &

Wineman 1963, 1964) that E=gyI+4,P+,0+¢R (4.5)

1 The numbers ¢, €, and y may be recognized as the ‘engineering’ tensile strains in longitudinal and circum-
ferential directions and shear strain in the wall of the tube, respectively. The two dimensional stresses N22, N1, N12
represent the corresponding three dimensional ‘engineering’ stresses, simply multiplied by the initial wall
thickness of the tube.

+ This assumption implies that we are neglecting the effect on E of the mean pressure through the tube. The
response functional is invariant under a linear time change t* = (+£4, 7% = 7+k, N(r*) = N(71), where £ is
a constant.
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where I'is the unit tensor and ¢, ¢;, ¢, P, are scalar functions of the invariants

tr P, trQ, trR, trP2 trQ? trRz,}

4.6
tr PQ, trQR, trPR, (4.6)

and functionals of f(7), g(7), ¢(7).

Although the above results are sufficient for any problem considered in § 3 in which ¥, G and p
are specified in any way we choose, we limit our attention in the rest of the paper to situations of
proportional loading, i.e. those in which we can take Q@ = R = 0. Then (4.5) becomes

E=¢yI+¢, P (4.7)
where ¢, ¢, are functions of tr P, tr P2 (4.8)

and functionals of f(7). For the small strain approximation in which we may use (3.17) and
(3.18) we write

F=2m,T(), G=2adS(0), ap=P(H), SO)=Pf@), T =Py, (49
where P2# are constants. For this to be possible the ratios
cop(t): S(2): T(t) = P11 P12; P22 (4.10)

must be maintained constant throughout the experiment although these ratios are at our choice
by assigning suitable constant values to the contravariant components of the tensor P. From
(3.9), (3.18), (4.7) to (4.9) we see that

€, = Go+ P P, =Pt $1 P2ty = $ PP, (4.11)
where ¢,, ¢, are scalar functionals of f(7) and functions of the invariants
I, =tr P = P+ P2 ], = tr P? = (P1)2 4+ (P22)2 4 2(P1%)2 (4.12)

It is interesting to note from (4.11) that the strains are related at all times ¢ through the formula

2fe(t) —eo(t)] _ P2—PU_ T(0) ~cop(
0 2 OB

(4.13)

which does not depend explicitly on the material response functions.
The values p, S, T may be maintained separately constant if we choose

S@) =h(t-t) (<1 (4.14)

where A(t) is the Heaviside unit function.
In all the experiments considered later the pressure difference  on the surfaces of the tube is
zero so that (4.11) to (4.13) reduce to

€ =G €= Po+ PP by =L
26 () —e()] _ P2 _ T(0) (4.15)
O S ON
where ¢,, ¢, are functionals of f(7) and functions of
=P, 1= (P 2(PP) (4.10)

The experimental results described in later sections are related to theory through (4.15) and
(4.16).
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5. EXPERIMENTAL DETAILS
5.1. Apparatus

The combined tension—torsion creep apparatus used in this work has been described in detail
by Hutchinson (1974). Its principle of operation is as follows.

The specimen has the form of a thin-walled circular cylindrical tube with integral flanges at
each end. It is mounted vertically with the bottom flange rigidly fixed. An axial force # may be
applied by means of weights suspended from a lever loading arm. An axial couple G may be
applied by passing current through a torque coil positioned between the poles of a permanent
magnet. Elongation of the specimen is measured by an lv.d.t. transducer which monitors
vertical movement of the top flange. Rotation of the top flange is measured by following the
angular deflexion of a light beam, reflected from a mirror which moves with the flange. Move-
ment of the light beam is followed along a linear scale normal to the beam, a correction being
made for the small tangent error involved (less than 0.75 9,).

In the work described here we shall assume that the deformation of the specimen between its
flanges is homogeneous and can therefore be simply deduced from the axial displacement and
rotation of the top flange. To reduce the effect of stress concentration, which would invalidate
this assumption, the specimen is flared with 4 mm radius shoulders at the junctions of the uniform
tube section with each end flange. It was found during preliminary tests with isotropic poly-
propylene specimens of different lengths /, (distance between flanges) that this geometry causes
end-effects which appear only as an apparent reduction of /, by 2.2mm, for strains of up to
ca. 0.01. The apparent stress—strain behaviour of the specimen is otherwise independent of /,,
justifying use of the above assumption when studying nonlinear viscoelastic behaviour.

In spite of careful alignment of the apparatus it was found that a small, but significant, degree
of cross-coupling occurred between tensile and torsional operating modes. This was calibrated
using creep experiments in pure tension and pure torsion, and allowances made for the effect in
combined tension—torsion experiments described below. Thus the force F was found to induce
a couple G, of order —0.016¢,F, while a shear strain y was found to give an apparent tensile
strain ¢ of order —0.012y.

With the specimen mounted in the apparatus there are seven possible contributors to random
scatter between results. These are non-reproducibility of transducer calibration (a), ¢,(b) and
G;(c), and measuring errors in the transducer output (d), light beam scale position (¢), mirror-to-
scale throw of the light beam (f) and torque coil current (g). The possible magnitudes of these
errors are indicated where appropriate in the results presented below.

5.2. Specimen

All experiments reported here were performed using a single specimen, machined from an
isotropic 60 mm diameter cylindrical bar of polypropylene (Propathene PXC 8830%).
Mechanical isotropy of the bar was confirmed by conducting tensile creep tests on rectangular
specimens (of dimensions 1 mm x 3 mm x 33 mm) machined with their long axes parallel or
perpendicular to the axis of the bar (two specimens of each). The difference between mean
values of the tensile creep compliance D(10s) for the two directions amounted to only 2 9,
which cannot be considered significant.

T Supplied by courtesy of I.C.I. Limited.
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Dimensions of the tube specimen were measured at 20°C and corrected to 65.5°C using a
coefficient of linear thermal expansion of 1.35 x 104 (°C)~, to give length (/;) 65.4 mm, radius
(¢o) 4.28 mm and wall thickness (w,) 0.427 mm.

Following machining, it was annealed within the creep apparatus at 100°C for 6 h to relieve
any stresses induced by machining. No detectable distortion or changes in dimensions occurred.
When remounted in the apparatus it was surrounded by a closed copper jacket immersed in
a temperature-controlled water bath. The temperature was raised to 65.5 °C and maintained for
three weeks before beginning the experimental programmes described below. The experiments
took place over a period of 6 months, during which time the temperature (as measured by a
thermocouple close to the specimen) varied from 65.5 °C by less than 0.1 °C, except for occasional
drops ofca. 5 °C (of ca. 4 h duration) when the bath was unavoidably replenished with cold water.
This procedure was necessary to ensure that the specimen was thermally well equilibrated and
that any internal thermal stresses (Hutchinson & McCrum 1972) had sufficient time to relax.
The results of different experiments could therefore be meaningfully compared, even if separated
by periods of recovery of days or weeks. In addition, care was taken that strains ¢, €,, ¥ never
exceeded 0.012, to avoid causing permanent damage to the specimen.

As a result of these precautions, over the 6 month period, no significant change (greater than
ca. 1%,) occurred in linear viscoelastic response, while at the highest stresses employed ageing of
the material was only just detectable, as a fractional decrease of 2 %, in the strain response to
a given applied stress. Over periods of up to one month the results reported below were found to
be entirely reproducible to within the precision of measurement.

6. RESULTS AND DISCUSSION
6.1. Isochronous siress—strain data for creep and recovery

Since the aim of the present work was to study departures from linear viscoelasticity in the
behaviour of the tube, the first step was to measure its linear viscoelastic response, pertaining to
small stresses. This was achieved by using creep experiments in pure tension and pure torsion.
In each case the loading history consisted of m regularly increasing rectangular pulses of F (or G)
of duration £, = 120s, separated by recovery periods of duration #, = 1200s. Thus the pure
tension experiment could be described by

T(r) = 5 nTyjalr), (1) =0, p(r) =0, (6.1)
where T} is constant, and
]n(T) = /Z[T_ (n_ 1) (tc+tr)] —k[T_ (n'— 1) (tc+tr) —tc]' (6'2)

The pure torsion experiment is given by

St = B 8,5u(r), Tl =0, plr) =0, (6.3

where S is constant. The origin of 7 has been chosen in each case to coincide with the onset of the
first pulse. In practice, the specimen was found to have a fading memory, such that with these
values of £, and ¢, the response to a stress pulse of given magnitude was independent of the number

48 Vol. 281. A.
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and magnitude of previous pulses. In this case the individual pulses can be considered separately
and so described merely by

T(T) = T[h(r) —h(t—t)], S(r)=0, p(7) =0, (6‘4)
for pure tension, where 7' is constant, and
S(1) = S[h(7) =h(1—1,)], T(7) =0, p(1) =0, (6.5)
for pure torsion where § is constant. Since (6.4) and (6.5) each correspond to special cases of
(4.9) with p = 0, the creep response at time ¢ (¢ < ¢,) after loading with a pulse of magnitude T (or
S$) is given from (4.15) and (4.16) by
(T, 8) = ¢§(1y, Iy, t) + T5(1y, I, t)’}
e(T,8) = gL, I 1), (¢ < L),

where I, = T, I, = T?, for tension, and

Y8, 8) = 28481y I, 1), (¢ < &), (6.7)

(6.6)

where I; = 0, I, = 252, for torsion, a superscript ¢ referring to a creep test. For the special case of
linear viscoelastic response, (6.6) and (6.7) yield

lim &¢(T,0)/T = ¢5°(0),
lim ef (7, )/ T = 45°(0) + 950, (6.8)

lim (S, /S = 265'(0).
In (6.8), §() = lim g8(11, 0, )/ 1)
v = 450,00,

are independent of stress and characterize the linear viscoelastic creep response.

(6.9)

The results of these experiments are shown in figures 1 and 2 as isochronous plots for ¢ = 10s
of f/ T against T and 4y°/$ against § for pure tension and pure torsion respectively. Error bars
correspond to possible random error from sources (@), (4)—(g) mentioned above. Extrapolating
the curves of figures 1 and 2 as shown gives, from (6.8)

$*(10s) = —1.207 m/MN,} (6.10)

¢$'(10s) = 4.173m/MN.

Creep response under combined tension—torsion was determined by using similar loading
programmes, each of the form

T(r) = 3 aTaju(r),
b (6.11)
S(r) = 5 nSuja(r),

each programme being characterized by the value of the ratio 7;: S, where Tj, S, are constants.
Again ¢, and ¢, were chosen to be 120s and 12005 respectively, and because of the fading memory

1 This was checked by varying the sequence of loading from the regular pattern given by (6.1) and (6.3) — with
unchanged ¢, and ¢,. No difference could be detected in the creep response to a given stress.
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of the specimen the response to (6.11) was indistinguishable from the response to isolated stress
pulses given by p(7) = 0, and

T(r) = T[h(1) —h(r—1¢
()= Tl ~Hr 101} 6.12)
§(r) = S[A(r) — k(T —1,)],
where T, $ are constants.
40
T
> 2 &
\J:‘\‘:‘Lr\/} = 35
— &
S :
oF e
M= $30 =
)
= O =
=
=0 )
=w =
o 125
S8
= ! | 1 ! ]
&b, 0 1 2
20 TJ(kN m-)
gg Ficure 1. Creep under pure tension. Isochronal plot of €;(¢) |T against T for ¢t = 10s.
a5
O = 44—
}
43
- +
4
p
g
=42+
S
o 41
< /\\{\J?\\J\
é |
| | |
e 0 ' 02 04 06 08
oln /(N )
E 5 Ficure 2. Creep under pure torsion. Isochronal plot of $y°(t)[S against S for ¢ = 10s.
- ®, The fc ial f (4.9) in which
— o e forms (6.12) are a special case of (4.9) in whic
f(r) =h(r)—=h(r—1t,), P?=S§, P2=T, (6.13)

The corresponding strains computed from (4.15) are
€f(T, S, t) = ¢8(ID L, 1) + T¢(1}(Il) L, 1),
(T, S, ) = §(Ly, I, 1), (6.14)
,yc(]", S, t) = 2S¢(f(11, 1,, t):
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for ¢ < t,and :
elr( Ta S, t_tc’ tc) = ¢5(Il, 12, t_tc: tc) + T¢i‘(]1’ 12, t—tc, tc)’
€£(T; Sa b=t tc) = ¢5(11’ 12’ =1, tc)) (6'15)
,),r(T, S> b=l tc) = 2S¢1i(113 12) L=t tc),
for ¢, < t, where from (4.16) and (6.13),

L="T, I,= T®+2s. (6.16)

A superscript r refers to recovery after stress is removed. The formula (4.15), follows and was used
to calculate the strain ¢, from the measured strains ¢, and y. Results during creep are shown in
figure 3 as isochronous plots of ¢f, €S, y° against 7" and S, for ¢ = 10s and different values of the
ratios T':S. Included in figure 3 for comparison are straight lines corresponding to linear visco-
elastic behaviour

€5(105) = T (103),

€(10s) = T (10s) + ¢S (105)], (6.17)

y°(105) = 25¢¢*(105), ‘

using ¢¢*, #¢* from (6.10). The reader will note from figure 3 that all three strain components are
below 0.01 under the conditions of these experiments, and so the approximations (3.17) and
(3.18) and use of the equations which rely upon them were justified in the present case.
Nevertheless, non-linearity in behaviour is clearly discernible, even at strains as low as 0.001.
Another interesting feature, the synergistic effect of tension on shear response and vice versa, is
also apparent in figure 3 (for example, compare y°(¢) for 7:5 = 1:2 and 6:1 in figure 3).

We conclude this section by considering recovery of the specimen following creep under com-
bined tension-torsion. At a time ¢ — ¢, after unloading let the strain component e, be ¢4 5(¢ — ¢, £,),
while if the load had not been removed the same strain component at the same time would have
been e54(¢). We follow the convention of previous authors (Ward & Onat 1963) and define a
recovery strain Ae,,

Aeaﬂ(t—tc, t,) = e5p(t) —ehp(t—1, t,) (6.18)
illustrated in figure 4. The significance of Ae,, is that for linear viscoelastic behaviour
Ae,p(t—15,8,) = e55(t—1,) (6.19)

for all ¢,. In practice, it is commonly found with nonlinear viscoelastic synthetic polymers that
the difference

Aeaﬁ(t— tc’ tc) /ggﬂ(t - tc) -1

is positive for small ¢ — #,, changing to negative at large ¢ — ¢, (Turner 1966; Ward & Onat 1963).
The experimental loading programmes were modified slightly from (6.11) to allow determination
of both ¢, and ¢} in (6.18). Every even-numbered pulse was made of equal magnitude to the
previous pulse but of duration 2¢, and was followed by a recovery period of 2t,.. This loading
history may be expressed compactly by

T(7) = Z’flnTokn(T), S(7) =n§:;1nsokn(7), (6.20)
where ko(1) = AT —3(n—1) (t,+¢.)] —A[T—3(n—1) (t,+1.) —1,]
FA[T— (3n—2) (&, +£)] —h[7— (3n—2) (t,+1) — 24,]. (6.21)


http://rsta.royalsocietypublishing.org/

\

\

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A

F

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

£

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

DEFORMATIONS OF NONLINEAR VISCOELASTIC TUBE 555

103 x strain

T/(kN m-1)

Ficure 3. Creep under combined tension—torsion. Isochronal plots of creep strain components against stress, for
t = 10 s and various values of ratio 7:S. Circumferential creep strain €; was calculated from ¢; and *
using (4.15). Dashed lines show linear response.


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

556 C.P. BUCKLEY AND A.E. GREEN

Parameters £,, £, were again chosen to be 120s and 12005 respectively, and again the response to
(6.20) could be assumed identical to that for isolated pulses of type (6.12) (odd numbered pulses)

or T(r) = T[h(r) —h(r—2t)], S(r) = S[h(r) —h(r —2t,)] (6.22)

(even numbered pulses).

Strains €, y* and hence, from (4.15), €5 were measured during recovery from odd pulses,
while ¢f, v° and hence € were measured for the same values of 7"and § during creep under even
pulses. In this way Ae, Ay, Ae, were calculated from (6.18). Isochronous results are plotted
against 7" and § in figure 5 for ¢—¢, = 10s, ¢, = 120s and different values of the ratio 7:.5. We

again include, for comparison, the straight lines corresponding to linear viscoelastic behaviour
given from (6.17) and (6.19) by

Ae,(10s, 1205) = T¢g*(10s),
Ag(10s, 120s) = T[¢g (10s) + ¢$"(105)], (6.23)
Ay(10s, 120s) = 25¢$"(10s).

stress e e e —

time
— e;,,

- — * N
strain l

Ae‘, 73 (t—tc, tc)

S
£°
_
T
<§‘1\
~

! (7]
L 1

0 t—t. [ t
Ficure 4. Creep and recovery loading programme, showing definition of recovery strain Aeyg.

time

In general features the results resemble those for creep strains given in figure 3. Comparing
figures 3 and 5, however, viscoelastic non-linearity may now be seen to appear as an increase in
the magnitudes of Ae,(10s, 120s) —e3(10s), A¢g(10s, 120s) —ef(10s), Ay(10s, 120s) —y°(10s)
with increasing stress.

6.2. Relation between ¢, and ¢,

It was shown in § 4 that response of the tube to a proportional loading history is completely
specified by the two functions ¢, ¢,. We now enquire whether these functions are in fact
independent for our particular tube of polypropylene.

Consider the creep experiment given by

N(7) = P[h(1) = h(T—1t,)]. (6.24)

Since (6.24) is a special case of (4.3) with Q = R = 0, the strain response at time ¢ (¢ < ¢,) is
given from (4.7) and (4.8) by

Eo(t) = g1+ 41 P, (6.25)
where ¢3 = ¢8(Il> -[2: t): 325(13 = ¢(1:(Il) Iz, t),} 6.26
I,=tcP, I,=trPe (6.26)
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Ficure 5. Recovery from creep under combined tension-torsion. Isochronal plots of recovery strain components
against stress for t—¢, = 10's, ¢, = 120 s and various values of the ratio T':S. Circumferential recovery strain
Ae, was calculated from Ae; and Ay using (4.15). Dashed lines show linear response.
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Now an empirical expression was recently proposed on intuitive grounds for describing creep of
the same tube of polypropylene (Buckley & McCrum 1974). When expressed in two dimensional
form it can be written

LB J J
rc o it ) B — .
E°(1) wo[ . 6] I+ 5P, (6.27)
where w, is the initial wall thickness. Also
B=B@), J=J(,1,1), (6.28)

and represent the threc dimensional compressibility function and shear compliance function
respectively. Comparing (6.25) with (6.27) we find that

g 1[B J| . J
F-wl3-3) % (6.29)

from which it is clear that (6.27) and (6.28) imply the following relation between ¢, and ¢,
for all I,, I,:

P61 Lp, t) _ $5y, I, 1) B(t)
e e B (6.30)

Since (6.30) must apply in the linear viscoelastic case of vanishingly small stresses it may be
rewritten in the form

—{(6/1) — ¢87} = $(81 — 7). (6.31)

The results given in figure 3 were used to test the relation (6.31). Thus — ¢§/I; and ¢$ were
calculated from €f(10s) and y°(10s) using (4.15) and plotted one against the other in figure 6,
for different values of the ratio 7': . Error bars indicate the possible random error from sources
(a)~(g) mentioned above. Also shown in figure 6 is the straight line relation of slope } predicted
by (6.31). It is clear that, to within the precision of measurement, there is close agreement with
(6.31), as would be expected from the agreement with (6.27) noted previouslyt (Buckley &
McCrum 1974).

A similar check is possible for recovery following creep. For the creep experiment (6.24),
a relation analogous to (6.25) applies during recovery at time ¢(¢ > ¢,) for the strains E*(¢ —¢,, ¢,)
(see 6.15). Hence the recovery strains defined by (6.18) may bc written

AE(t—t, t;) = AgoI+Ag, P, (6.32)
where AE(t—t,t,) = E°(¢) — E*(t—t,t,),
A¢0 = A¢0(Iv I, t—t, tc)

= ¢g(11’ 12’ t) _¢(‘;(115 125 t_'tc, tc), (633)
A¢1 = A¢1(Il) 125 t—1, tc)

= ¢(13(113 125 t) —¢§(115 12’ t—1, tc)'

The analogous relation to (6.27) is

LE_M T (034

AE(t— =— —
(t tc: tc) w() 2w0

where B=B(t—t,), AJ=AJ(,It—t,t,), (6.35)

t The results presented before in support of (6.27) referred to a creep time ¢ = 100 s, while figure 6 refers to
¢t = 10 s. This underlines the fact that the accuracy of (6.31) appears to be independent of .
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which, compared with (6.32) and making use of (6.19), leads to the analogue of (6.31)

_{(A¢0/11) _—8* = %‘(A¢1”‘$‘i’): (6-36)

where & =@ (t—1,), @ = ¢$(t—1,).

The recovery results given in figure 5 were used to compute — Ag,/I, and A¢, from (6.14), (6.15)
and (6.33); these are plotted in figure 7, together with the straight line relation (6.36) for com-

16 T T T T T T T

12
11

44 48

12 : N

16 B

—I7¢5 (10 5)[(m MN-)

16 -

08 6:1 -

1 1 1 1 1

40 4[4 4l.8 52 56
$1(105)/(m MN™)
Ficure 6. Experimental test of (6.31) during creep under combined tension—torsion. Isochronal plots of — ¢°(t)/I,

against ¢{(¢) for ¢ = 10 s and various values of the ratio 7":S. Arms of the crosses indicate estimated limits of
random error.

parison. Again, to within the precision of measurement, no systematic departure from (6.36)
can be detected.

We thus conclude that, for our particular tube of polypropylene under combined tension—
torsion, the response functions — ¢,/1;, ¢, are linearly related through a gradient of 4 for both
creep and recovery experiments.

49 Vol. 281. A.
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1.6 T T T T T T
120 T = -
ol 1:2 -+ 11 e
1 1 L
44 48
T T T T
32 i
t t } f
- 31 B
f } t t t f } } t
16+ B
12+ _
— 6:1 i
08 4l.0 l 4:.4 ( 41.8 ‘ 5‘.2 f 5;.6

Apy(10's, 120 s)/(m MN-1)

Ficure 7. Experimental test of (6.36) during recovery from creep under combined tension—torsion. Isochronal
plot of Ady(t—1,,t,)[I; against Ap,(¢—1t,,t,) for t—t, = 10s, £, = 120 s and various values of the ratio T:§.
Arms of the crosses indicate estimated limits of random error.

6.3. Stress dependence of ¢,

If ¢, and ¢, are indeed simply related, creep and recovery response of the tube is completely
specified once the functional dependence of either one of these, say ¢;, on I; and I,is known under
conditions of creep and recovery. We note, however, that we may equivalently consider ¢, to
depend on any two independent combinations of I; and I,. From the point of view of gaining
physical insight into the nature of the non-linearity and to aid comparison with the work of other
authors, we prefer to consider the dependence of ¢, on the more familiar invariants J;, J, of the
three dimensional stress tensor 2§

J,=trE, Ji=1i[tr(£)2—(tr¥)?, (6.37)

t Jy, J; are related to the ‘mean’ stress %, and ‘effective’ stress X widely used in classical plasticity through
Zn =3y, 2= J(3Jy)-
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where 2’ is the three dimensional deviatoric stress tensor defined by
2 =3-1It:, tr¥ =0. (6.38)

When X reduces to two dimensional form, as it does in all circumstances within the scope of this
paper, Jy, J; may be rewritten in terms of Iy, I,:

woJy =1, wiJ,=3i[I,—1I3]. (6.39)

The significance of Jy, J, is that they separately characterize the hydrostatic and deviatoric com-
ponents of the stress field, respectively. For creep and recovery under combined tension—torsion
we have from (6.16) and (6.39)

wedy = T, wiJ,=3T2+82 (6.40)

The dependence of ¢¢ and A¢, on J,, at constant J;, was measured by using creep and recovery
under pure torsion. This procedure was adopted to allow J, to approach zero. The loading
programme employed took the form

S(r) =é1nsokn(f), T(r) = 0, (6.41)

where on the nth pulse J; = 0, w}J; = n2S3. As before, £, and ¢, were chosen to be 120s and 12005
and the loading could instead be considered to consist of isolated creep experiments of the form
(6.5) (odd-numbered pulses) or

S(r) = S[h(r) —h(r—2t)], T() =0, (6.42)

(even-numbered pulses). Since (6.5) and (6.42) are special cases of (6.12), (6.22) with 7" = 0,
¢¢ and A¢, were calculated from y° and y* by using (6.14), (6.15) and (6.33). Isochronous results
for t = 10s and ¢ —¢, = 10s, {, = 120s respectively are shown in figure 8. Within the precision
of measurement a linear relation with J; holds for both ¢¢ and Ag;.

Aloading programme was also devised which allowed ¢$ and A¢, to be measured at regularly
increasing values of J;, while maintaining J; constant. This took the form

T(r) = S whia(r), S(r) = 5 (g Sy 4wt T3sn(r), (6.44)

where J; was held constant, while wyJ; = nT}, on the nth pulse. In this case ¢, and ¢, were chosen
to be 200s and 2000s respectively and the loading could instead be considered to consist of
isolated creep experiments of the form (6.12) with values of § and 7 chosen to maintain J,, from
(6.40), constant. To obtain ¢$(¢) for ¢ greater than #, a 10s linear extrapolation of the creep curve
was employed in this instance. Again, ¢¢ and A¢; were calculated from y° and y* using
(6.14), (6.15) and (6.33). They are plotted against J; in figure 9 for a constant value
wgJ; = 0.729kN?/m?. This was chosen to allow the greatest range of J; to be covered while
restricting all strains to be always less than 0.012. From the data of figure 9 it is clear that to
within the precision of measurement both ¢¢ and A¢, are linear functions of J;. There is also
evidence that the difference A¢g, — ¢ slightly decreases with increasing J;, at this value of J;, in
contrast to its marked increase with increasing J; when J; = 0 (figure 8).

In order to observe the separate effects of J; and J; on the time dependence of ¢¢, a few longer
term creep experiments of type (6.12) were carried out, with #, = 10%s, separated by times ¢, of
at least 10%s. The resulting time dependence of ¢ for different combinations of J; and Jj is

49-2
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illustrated in figure 10. It is clear that the departure from linear viscoelastic behaviour with
increasing J; at constant J, and with increasing J, at constant J; both become more marked
with increasing creep time ¢£.

! | I | ! ]
0 02 04 06

w3 J;/ (kN2 m—2)

Ficure 8. Dependence of ¢, on invariant J, during creep and recovery under pure torsion (J; = 0). Isochronal
data for t = 10s and ¢—¢, = 10, , = 120 s respectively. Estimated limits of random error in ¢, are shown.

6.4. Further remarks

For proportional loading in which the pressure difference p is zero, we have from (4.9) and
4.11

( ) €6 —€ = ¢1P222 Y= 2¢1P12) } (6 45)

T(r) = P%f(r), S§(r) = P(7). '

In the notation of § 6.3, ¢, is a functional of f(7) and a function of the invariants J;, J, where
w = P, ufy = §(PR)+ (P, (6.40

Now consider the separate responses to identical histories of pure axial tension, equal pure axial
compression and pure torsion. These situations correspond respectively to

p2=T, Pi=J, (6.47)

P2 =—T, P2=0, (6.48)

P2=0, P2=S (6.49)

The corresponding strain responses, at the same time ¢ after the onset of f(7) are, from (6.45) to
(6.49), a(T)—e(T) = T6,(T,4T7), (6.50)
a(—T)—€,(—T)=—Tey(—T,5T1%), (6.51)

¥(S) = 254,(0,52), (6.52)

where it is understood that in each case €, €, ¥, ¢, are all functionals of f(7).
For the tube of polypropylene and the stress histories considered in § 6.3 the results recorded
in figure 9 indicate that ¢¢ and A¢, are linear functions of J; for fixed J;. If there is a set of
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histories f*(7) for which the response function ¢, in (6.50) to (6.52) is a linear function of J, for
all values of J,, it then follows that

3ty (8) = [a(T) —e.(T)] - [a(— T) —e,(— T)], (6.53)

when we choose T = 31§ and f = f*. The utility of (6.53) lies in its power to predict response to
pure torsion from the results of experiments under pure axial tension and compression, for all
histories f* (7). Although using different specimen geometries from that considered here, Benham
(1973) found the correlation between tension, compression and shear given by (6.53) to hold with

wed;  wéy E
KNm' kN*m-2 D
A 0 00454
7. B 0 0182
T Cc 0213 0182
D 0 0.593 C
49 , Ag, E 0427 0593 B
A
_ =~ ol
4.8( Z
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—~ &
- =
Z =
2 47k <
E ‘ o
£ #
RSN
46
4
| 1 1 1 1 1 ]
4'50 05 10 15 - 0 2 4
wyJy/(kN m~?) lg (¢fs)
FicUre 9 Ficure 10

Ficure 9. Dependence of ¢, on invariant J; during creep and recovery under combined tension—torsion (values
of § and T chosen to maintain constant w3 J; = 0.729 kN2/m?). Isochronal data for ¢t = 10sand t—¢, = 105,
¢, = 200 s respectively. Estimated limits of random error in ¢, are shown.

Ficure 10. Effect of invariants J; and J; on time dependence of ¢j(¢) during creep under combined tension—
torsion.

a remarkably high degree of precision for non-linear viscoelastic creep in polyvinyl chloride,
polymethyl methacrylate and polypropylene. It may be observed that the result (6.53) also
follows under the less restrictive assumption that, for a set of histories f*(7),

¢1(*];la Jé) = ¢1<Oa Jé) +$1(J1’ J;),}

where Bl TD) = — Bul — s J3)- (6.54)

Now consider another set of histories f(7), which we denote by f*(7), corresponding to propor-
tional loading, for which relations of the form (6.31) and (6.36) exist between ¢, and ¢,. Thus,

more generally,
—{Pol 1y — $8} = ¥{b1— H1} (6.55)
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where ¢F, ¢F are defined analogously to ¢§" and ¢¢" in (6.9). As mentioned above, the stress
dependence of ¢, is then completely defined by that of ¢,. This implies a considerable saving of
experimental effort in experiments involving proportional loading. From (4.11) and (6.55)
determination of the complete strain response to a history f+(7), as a function of stress magnitude
requires only (4) measurement of any fwo of €, €,, v in an experiment with vanishingly small
and [, (in order to obtain ¢§, ¢§), and (b) measurement of any one of ¢, €,, y in experiments with
different magnitudes of I; and I, in order to obtain, with the help of (6.55), both ¢,(1;, I,) and
$1(I3, Iy). As an example of the application of (6.55), consider the experiments of equal axial
tension and compression, given by (6.47) and (6.48). From (4.15), (6.40), (6.47), (6.48) and
(6.55) we find, at the same time ¢ after the onset of f+,

&(T) = T{$§ + 597 +36:(J1, J2)},
6(T) = T{¢5 + 37 — $6:(J1, J2)} (6.56)
wey =T, wiJy = 5T%
for axial tension, and
a(—T) = — T{$§ + 5¢¥ + 56:(J1 J2)}
(= T) = — T{$5 + 55 — 51 (S, Jo)}s (6.57)
woy =—T, wyJy=4T%

for axial compression. On physical grounds, however, it might be expected that

$1(J1 Ja) > 61(0,J3) > (=, Jy) (6.58)

when J; > 0. If this is the case it is clear from (6.56) and (6.57) that the material will be stiffer in
compression than in tension, i.e.

a(T)>—e(—=T), —e(T)>e(-T). (6.59)

The first inequality of (6.59) has been shown to hold, using other specimen geometries, during
tensile and compressive creep of polyvinyl chloride, polymethyl methacrylate, polypropylene
and polyacetal copolymer (Thomas 1969; Benham & Hutchinson 1971; Mallon, McCammond &
Benham 1972). The second of (6.59) concerns the strains normal to the axis of tension or com-
pression. It has been shown to hold by Mallon et al. (1972), again using specimen geometries
other than that considered here, during tensile and compressive creep of polyvinyl chloride,
polymethyl methacrylate and polypropylene. The relation (6.58) is consistent with the increase
of ¢¢ and A¢, with J; found for polypropylene in the present work, and also with the fact that
applying hydrostatic pressure (J; < 0) always decreases the strain response to a given applied
stress, for a wide range of polymers (Ainbinder, Laka & Maiors 1965; Pugh, Chandler, Holliday
& Mann 1971; Jones Parry & Tabor 1974; Sauer & Pae 1974). k

We note, finally, that for histories f which belong to both sets f* and f+ a further economy of
experimental effort is possible. The strain responses to axial compression may be predicted from
the longitudinal strain ¢(7T) resulting from equal axial tension, if the shear response function
$,(0, J,) and linear viscoelastic responses ¢§, ¢f corresponding to f are known. Thus, combining
(6.54), (6.56) and (6.57) we find

a(=T) =(T) = 2T{¢§ + 65 +56:(0, )} }

(= T) = =4a(T) = T(g5 + 36t ~$6:(0, )} (6.60
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7. CONGLUSIONS

The foregoing sections have shown the present theory to be attractive in combining two
desirable (and often mutually exclusive) features. First, it has wide generality in making no
restriction, other than isotropy, on the viscoelastic behaviour of the tube. Secondly, it takes a form
which is simple enough for routine application to experimental data.

It is unfortunate that it may be applied only in the case of small deformations. This was shown
in § 3 to result from the fact that the applied force, couple and pressure must at all times balance
stress components referred to the chosen convected coordinates. In practice the limitation is not
serious, since in engineering applications of viscoelastic materials it is usual for strains to be
restricted on a routine basis to be less than or of the order of 0.01.

The most important outcome of the present theory is that four material response functions
Do D1, Do, @5 are suflicient to describe completely deformations of the tube under the conditions
prescribed. It is natural, therefore, to express experimental data in terms of these functions. In
fact, when the stress history takes the more restricted form of two superposed proportional
loadings only three functions ¢, ¢;, ¢, are sufficient. This class of stress history includes all
experiments that can be performed with the two most usual configurations of axial force and
torque or axial force and pressure difference. In the yet more simple case of proportional loading
only two functions @, and ¢, are sufficient. This is the class of stress histories which was used in
the creep and recovery experiments under combined axial force and ‘torque described in
§§ 5 and 6.

Results of these experiments on polypropylene confirmed that non-linearity of material
response is significant even when deformations of the tube are small enough to allow application
of the present theory. In fact, departures from linear viscoelastic behaviour were easily resolved
at strains as low as 0.001. A result of some practical importance was that the present theory
allowed the circumferential tensile strain €, to be calculated from the much more easily
measurable strains ¢, and 7y, during both creep and recovery.

The same experiments showed that, for the particular tube being considered, — ¢,//, is linearly
related to ¢, through a gradient of . This is a concise statement of the intuitive notion that
nonlinear behaviour can be described simply by allowing the shear creep compliance J to
depend on stress history. It has two far-reaching implications. First, the experimental effort
required in measuring the response of such a tube to proportional loading is considerably
reduced, since only ¢, need be measured. Secondly, by focusing attention on J it will stimulate
the search for the mechanism of nonlinear creep. Much is already known of the physics governing
J, for several of the practically important viscoelastic materials.

Non-linear behaviour of this particular tube was shown to arise in creep and recovery through
¢, increasing with both J; and J; (defined in (6.37)). In creep, this was found to be the case for
all creep times between 2 and 10*s. The difference A¢; — ¢$, however, a manifestation of ‘load
interaction’ nonlinearity, was found to increase with J; but not with J;. These results show that
the degree of nonlinearity depends not only on the current hydrostatic and deviatoric com-
ponents of the applied stress but also on their history.

We conclude by noting that, although motivation for this work sprang from the needs of a
common experimental test method, the results obtained may have wider significance. Several
practical situations exist where thin-walled circular cylindrical tubes, of essentially isotropic
viscoelastic material, are subject to stress systems which may lie within the class considered
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in this paper. The fields of structural engineering and bio-engineering provide two examples of
topical interest — the increasing use of extruded thermoplastic pipes and the normal functioning
of human blood vessels.

The authors are indebted to Dr N. G. McCrum for his lively interest in this work. Financial
support was provided by the award of an I.C.I. Research Fellowship to G.P.B.
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